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Bayesian estimation end design are considered for a dichotomous
response surveillance model for defectives. The probability of a defective
item after storage time t is assumed to be given by F(t) = l-exp (~-it),
0 <«t, A < =, Surveillance is carried out by removing k lots from storage
and observing the size (ni), storage time (t i) and number of defectives (ri)
for each lot. The r, are assumed to be independently and binomially
distributed with respective expectations niF(t i)° A prior gamma distribution
is assumed to be available for A. The posterior distribution of A is
derived as well as its moments, including the mean which is the Bayes
estimate assuming quadratic loss. A formula for the corresponding Bayes
risk is derived as are some recursive relationships to aid in computation,
A design procedure is given for selecting swrveillance times and sample
sizes successively one lot at a time, Tables of optimum surveillance times

and Bayes risks at these times as functions of the prior parameters and
semple size are provided to help with this selection procedure.
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1. INTRODUCTION
Bsyesian estimation and design are considered for a dichotomous
response surveillance model for defectives. The probsbility of a defective
item, F(t), is assumed to be related to the time t after storage at which

surveillance testing is performed by the cumulative distribution function

F(t) =1 = exp (-At), 0 < t, A < w, (1.1)

This distribution function is appropriate if an item is defective whenever
it has one or more defects and when the number of such defects is a Poisson
random variable with mean At. The function (1.1) also arises when the
failure time of each item is exponentially distributed with mean (1/1).
Surveillance is carried out by testing k lots of size ng at respective
times ti and finding r defectives in the i-th lot. The r i's are
assumed to be independently and binomially distributed with means
0, F(t;), 1 = 1,2,...,k.

It is assumed that prior information on A can be summarized by

specifying a gamma distribution with probability density function

g(r]a,8) = I"Ho+1)8™ e 282%, A0, a>-1,850 (1.2)
vhich has mean and variance

E{r|a,B) = (a+1l)/8 ; (1.3)

v(rla,8) = (a+1)/8%, (1.4)

respectively. This distribution is in the extended natural conjugate family

for this problem and is flexible. HMoreover, considerable past information



is usually available in surveillance situations for uses in specifying
prior paremeters. A gquadratic loss function is also assumed for A in
the determination of its Bayes estimate denoted by Ae

The surveillance setting for testing for defectives is described
by Hillier [6]. The assumption of an exponential distribution fumction
as specified by (1.1) is common in reliasbility life testing problems
{see Epstein [5]). It also arises frequently in epidemiology and biological
assay through its relationship with the Poisson distribution (see Cornell
and Speckman [3]). Bayesian estimation for this problem when the .
probability of a defective is fixed is considered, for instance, by
Bracken [2]. His work is not appropriate for our\surveillance situation
because his prior on A would involve the design parameter t.

In Section 2 derivations are presented of formulas for the posterior
probability density function of A, its mean which is our Bayes estimsate
X s Other posterior moments of A, the joint marginal probability function
of the ri’s and the Bayes risk. Recursion relationships to assist in
using these formulas are given in Section 3. Then the selection of the
time at which to carry out a surveillance test and of the corresponding
lot size are considered in Section 4, The results presented there can be
applied successively to select the complete set of k lots inspected during
a surveillance program. Tables of optimum surveillance times are included
in Section 4 followed by tables of corresponding Bayes risks for use in

selecting lot sizes,
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2. BAYES RESULTS FOR k LOTS

Let » = (rl,...,rk) be the number of defective items in lots with
respective sizes n = (nl,...,nk) corresponding to inspection times
t= (tl,...,tk). From the assumptions stated in Section 1, the joint
probability function of the elements of y given A is

| -Xbg \T
2(r|r) = {exp[-a} ti(ng-r )1 () 1 (1-e 1)%, (2.1)
Lo
: i i i i

where the subscript i renges from 1 through k unless otherwise specified.

Binomial expansion of the last product term in (2.1) leads to

4
2(zfr) = m (") p(a,z5 0,0),

i i
where
o r
1 k JoFoeet] r,
D(AorsvaB) = ) o0 (<1)% kg (Ji)x"
3,0 3,=0 i1

exp {~A[Jt, (n,-r.) + Jt.5, +81} .
i i

We also define

: ! % Johesetd ) v
S(rs v 8) = J oo+ ¥ (-1)% k n(Ji) (2.2)
. =0 3,.=0 193

-y
[?‘i(ni"ri) + ?’idi + g]

and note that

]0 D(A,X3v,8) dAr = I(y+1) S(r;y+1,8). (2.3)



Using (2.3) along with the prior probability density function on A
given by (1.2), we can write the corresponding posterior probability

density function for A as

h(rlz, o, B) = ri(at1) D2, r; a, 8)/8(x; otl,s). (2.4)

Similarly, use of equation (2.3) enables the marginal probability function
of r to be written as

n
£lzle, 8) = 1 (1) 6" s(z; o1, 8) (2.5)
1 T3

and, with y = & + h, the y-th moment of the posterior distribution of A

about the origin to be written as

[]
us (Alzs a, 8) = nl (o+3) S(r; otwtl,B)/S(r3arl,s). (2.6)
J::

The Bayes estimate A is given by setting w = 1 in (2.6) and the posterior
variance of.A can be determined by using equation (2.6) in the calculation
- -2

The Bayes risk is defined as
Ra, 8) = E. _{A=2)°
? A,}'_

where EA P denotes expectation with respect to the joint distribution of
sl

Aand r, Similarly defining Er and Exlr’ we have

o \2
- A!r_“'” (2.7)

n
. 1
R(a,B) = E_ EA,r(A—A)e = Jeeo § flz)o,8)E
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where f(r|a, B) is given by (2.5). Now Ek'r(i-x)z = Ellr(A?)-iz can

be evaluated using (2.6). Substituting the resultant expression into (2,7)
and noting that

! By

Z 289 2 f(};‘a’e) = 1

r1=0 rk=0

implies from (2.5) with « replaced by a + 2 that

oy oy n

g o § e T sl e3,8),
r=0 1=0 i i
we find that
n
1 e n
R(o,8) = (@2)(e#1)8Pu(es2)?6® § -o T n(D) (2.8)
nl=0 rk=0 i1

82(_1:_; o+2,8)/8(r3 ot+l,B).

Although the expressions presented in this section for Bayesian
analysis of surveillance data are complex, computations using them are
well within the capacities of modern computing equipment, Moreover,
vhen o is chosen to be a positive integer the S(g; o, 8) functions which
occur in all of these expressions satisfy recursive relationships

which can be utilized in these computations and which are derived in the

next section,

3. RECURSIVE RELATIONSHIPS
The expressions derived in gection 2 all require the evaluation of
S{x;v,8) functions as given by equation (2.2). When k = 1, we can

guppress the subscript i in {(2.2) and write



r )
8(rsv.8) = ¢7Y § (-1)3(]) (g+)7Y (3.1)
§=0
where K= n - r + 8/t, For k = 2,3,,,. we can similarly write
T r
1 %1 j4...td L kelr, Tk .
S(rsve8) = 47Y L or 1 (1P T (h [ )T (3.2)
leo Jk_1=0 i=1 vi jk=0
k k=1
with kK = .Elti(ni‘ri)/tk + izltiji/tk + a/tk. Comparison of equations

(3.1) and (3.2) reveals that for any positive integer k, the evaluation of

S(r;v,8) involves the evaluation of one or more sums of the form

kg
V() = ] (@)Y (3.3)
350

for suitably selected r and K, We develop recursive relationships for
evaluating T(Y)(K) in this section for integer values of Y.

First consider the Beta integral

1 o
[ #(-x)ax = M) (r+1)/T(K+r+1) = r1/ T (3+K), k > 0,
0

=0
which can also be integrated in the form
r 1 r
jgo(-uﬂ(g) . Koy o Jzo(-l)"(g”)/(m) = tM(x), (3.4)
Thus
r
@ (k) = r1/ 1 (34K). (3.5)

3=0
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Differentiating T(l)(K) as given by the middle expression in (3.h4),
we obtain

(1) r
3T aK(K) = (1) § (,1)5(3)/(1+K)2 = 1 (x). (3.6)
J=0

Evaluating (3.6) using (3.5) yields

r r
®)(k) = a1 [ ] /(0] T (3+6)7L. (3.7)
= =0

We can extend (3.6) to any positive integer Y to give the recursion

formuls,

T(Y)(K) = -(Y—l)"1 aT(Y-l)(K)/aK (3.8)

which could in turn be used to develop an equation for T(Y)(K) in the way

(3.7) was derived for Y = 2. In particular, for Y = 3 it can be shown that

203V (k) = (r1/21) (I E . 21+ [ E 1-5-7]2} ; (345) ™
gm0 (I¥K) g0 KT 4e0

Now define the polygemma function

;
(k) = :‘{7 in T(K) (3.9)

where

1K) = [ %5 Yax = r(r+1+K)/[K(14K). .. (r+K) ). (3.10)
0



Taking logarithms and derivations with respect to K of both sides of

(3.10), we find that

g‘_l'%ig.‘.gg___ ‘b(l)(K) = lll(l)(K+r+l) - ;LIE" 'i%k"“ cee ;'i'i'{"
which shows that
r )
7 1/(3+8) = $) (rerex) - V() (3.11)

J=0

Differentiation of both sides of (3.11) with respect to K, along with

(3.9), yields the similar expression

7 1002 = (12 (v - v (0.
350

Then by induction it can be shown that

r
7 1/0+k) " = (1) a0 V() 17 ()1, (3.12)
J=0

From (3.3) and (3.12) it is clear that the gy, v=1,0,...,
can be expressed as rational combinations of polygamma functions, Hence,
from (3.1) and (3.2), the Bayes estimate A and the other formulas derived
in Section 2 can also be expressed using polygamma functions for integer
values of the prior parameter o, Tables for di-, tri-, tetra~ and

pentagamma functions are given in [1]. Another source of tables of poly=-

gamma functions is [L4].
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4. DESIGN

The design of a surveillance test, denoted by e, is discussed in this
section for a single lot and involves the choice of the time of testing ¢
and the lot size n. Even when several lots are tested in a surveillance
program, the testing is usually done successively one lot at a time,

The prior informetion utilized at any given stage can be adequately
described, at least for planning purposes, by & gamma distribution with
mean and variance determined from the posterior distribution given the
data on the lots already tested using equations (1.3), (1.L4) and (2.6).
Petrasovits [7] nas shown that the actual posterior distribution with
probability density function given by (2.4) and the gamma distribution
with the same mean and variance have similar moments under a variety of
situations. After the testing of a lot is completed, the formulas of
Section 2, which were developed for any number of lots, can be applied
to the data on all of the lots tested through that time.

The expected cost C(e,X) of a decision to be based on a surveillance
test, e, may often be separated into two components, the expected sampling

cost B, [C (e,r)] and the expected loss function E [L(A,i)]
A,r" s A,r

multiplied by an appropriate scale factor, n. Thus an experiment is chosen

to minimize

cle,d) = B, [C_(e,r)] +qE, [L(1,1)]

As

El,r[Cs(e’r)] + yR{a, B) (L.1)
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where R(q,8) is the Bayes risk computed using the prior gamms distribution
depending on the surveillance results already obtained in addition to
the prior distribution originally specified,

The computation of Ex,r[cs(e,r)] is usually straightforward since
Cs(e,r) is often independent of both r and t., In this situation, t
may be specified to minimize the Bayes risk and then the relationship
between the Bayes risk and the expected sampling cost may be used to
select n and complete the design of the surveillance test. To help in
this design process, values of t, denoted by to, which minimizes the
Bayes risk are given in Table I for several combinations of n and

)-1/2

coefficients of variation v = (a+l with prior mean u = (o+l)/B8 = 1.

The corresponding Bayes risks are displayed in Table II. If the expected
cost of sampling is independent of r but depends on t as well as n, then
t and n would be selected by minimizing the right side of equation (k,1)
numerically utilizing equation (2.8) for the Bayes risk.

It can be shown that there exists at least one positive t. which

0

minimizes the Bayes risk. Moreover, numerical computations carried out

in the preparation of Tables I and II suggest that t, is unique, so t

0

is referred to as the optimum surveillance time. Also, it can easily

0
be shown that in the tabling of optimum surveillance times to it is only
necessary to consider prior distributions with means u = 1 as in Table I,

To obtain a to for a prior mean u # 1, divide u into the corresponding

entry in Table I. Similarly u = 1 for all entries in Table II,

Corresponding Bayes risks at to for other prior means can be conpiited

by multiplying the appropriate entry in Table II by uz.
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TABLE I. Optimum surveillance time t_. with prior mean one by prior

0

coefficient of variation v and sample size n

v n=1 n=25 n =10
0.1 1.5850 1,584k 1,5838
0.2 1.5593 1.552k 1.5451
0.3 1.5179 1.k910 1.467h
Ookt 1.4626 1.4019 1.3577
0.5 1,3961 1,2944 1.2320
0.6 1.3215 1.1792 1.1021
0.7 1.2418 1.0651 0.9824
0.8 1.1602 0.9572 0.8722
0.9 1.0789 0.8583 0.7737
1.0 1.0000 0.T7693 0.6871
1.5 0,6717 0.4510 0.3969
2.0 0.4586 0.2921 0.249l

TABLE II. Bayes risk at the optimum surveillance time to with prior

meen one by prior coefficient of variation v and sample size n

v n=1 n=5 n =10
0.1 0.0099 0.0097 0.009k
0.2 0.0390 0.0356 0.0320
0.3 0.0854 0.0711 0.0588
0.4 0.1468 0.1110 0.0855
0.5 0.2210 0.1530 0.1115
0.6 0.3066 0.1968 0.1378
0.7 0.4026 0.2429 0.1653
0.8 0.5086 0.2920 0.1945
0.9 0.6243 0.34bL5 0.2261
1.0 0.7500 0.4010 0.2602
1.5 1.5338 0.7517 O.hThh

2.0 2,5922 1,2273 0.7672




(1]

(2]

(3]

[u]

(51

[6]

(7]

REFERENCES

Abramowitz, M., and Stegun, I. A. (Editors), 1964. Handbook of
Mathematical Functions. National Bureau of Standards,
Washington, D. C,

Bracken, J., 1966. Percentage points of the beta distribution for
use in Bayesian analysis of Bernoulli processes, Technometrics,

§,s 687“' 69)4 °

Cornell, R. G. and Speckman, J. A., 1967. Estimation for a simple
exponential model. Biometrics, 23, T17=-T37.

Davis, H, T., 1933. Tables of the Higher Mathematical Functions, 1,
Principia Press, Bloomington, Indiana.

Epstein, B., 1958. The exponential distribution and its role in
life testing. Industrial Quality Control, 15, 5-9.

Hillier, F. S. 1962. Surveillance programs for lots in storage.
Technometrics, L, 515-530.

Petrésovits, A., 1970, Approximations to Bayes Procedures for Quantal
Assays with Simple Exponentisal Tolerance Distributions.
Dissertation, Florida State University, Tallahassee, Florida:

13



